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Abstract

This paper examines the application of the statistical mechanics to the analysis of various physical properties of the elastomeric networks.
The equilibrium properties of rubber-like networks are discussed, and also some dynamic properties, such as the relaxation spectrum of
Gaussian networks. The paper covers a large spectrum of properties of polymer networks such as: fluctuations and chain dimensions in
unimodal and bimodal network, effects of entanglements and constraints on the elastic properties of the network, segmental orientation,
liquid-crystalline networks, small angle neutron scattering from networks, strain birefringence, elastic properties of filled networks, strain
induced crystallization etc. The paper shows that the statistical mechanics can be successfully used to the analysis of almost all physical
properties of rubber-like networks. © 2001 Published by Elsevier Science Ltd.

Keywords: Elastomeric networks; Physical properties; Statistical mechanics

1. Introduction

Elastomeric polymers are materials that are commonly
used in everyday life. A better understanding of structure
and properties of elastomers is therefore an important scien-
tific and technological problem the can lead to the improve-
ment of various properties of the known elastomeric
materials, and to the development of completely new high
performance polymers.

The subject of this paper is theoretical analysis of elasto-
meric networks based on statistical mechanics. The cover-
age is restricted mostly to equilibrium properties of
networks, with the exception of theoretical analysis of the
relaxation spectrum of Gaussian networks. The dynamical
problem of the relaxation of Gaussian networks is directly
related to the eigenvalue problem of Kirchhoff martices for
the network, covered in detail in this work, so it was natural
to include this problem in this paper.

The structure of this paper is the following: Section 2 has
introductory character and is an overview of various classi-
cal theories of rubber elasticity. In the later part of this work
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the theory of phantom Gaussian networks is discussed in
detail.

The phantom Gaussian network model is a fundamental
concept in the theory of rubber-like elasticity and is used by
advanced theories of real networks as a reference state upon
which these more realistic models are built. The rigorous
analytical results for this model are presented in Section 3.
Section 4 shows the application of these results to the theo-
retical analysis of small angle neutron scattering from unim-
odal polymer networks

Section 5 contains the theoretical analysis of bimodal
networks, i.e. networks composed of two types of chains:
long and short ones. Recently it has been found that the
bimodal distribution of polymer chains can be used to
improve mechanical properties of high performance elasto-
meric material. The basic theoretical analysis of these
networks is therefore important from the point of view of
possible industrial applications of these materials.

Section 6 contains the study of dynamic properties of
Gaussian networks, based on the eigenvalue analysis of
Kirchhoff matrices. The new more realistic theory has
been presented, which extends the classical theory of
Graessley by taking into account the internal structure of
network chains. This new theory gives much better insight
into the dynamics of real networks and has been recently
applied by various experimental groups to the analysis of
data on the dynamics of elastomers.

Section 7 gives the theoretical analysis of the effect
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of constraints along polymer chains on the elastic
properties on rubber-like materials. The new ‘diffused-
constraint’ theory of rubber elasticity, which is an
extension of the classical constraint theory of Flory is
presented. Flory assumed that constraints are localized and
effect only fluctuations of network junctions. The new
theory is more realistic since it takes into account the effect
of constraints on the fluctuations of both network chains and
network junctions.

Section 8 contains the theoretical analysis of segmental
orientation, and polymer networks composed of semi-rigid
chains. Such liquid-crystalline networks have very interest-
ing properties because of the possibility of the isotropic—
nematic phase transition induced by stretching the networks,
or by deswelling it. Mechanically driven phase transitions
are extremely interesting both from the fundamental point
of view and because of various possibilities of practical
application.

In Section 9 the strain-induced crystallization in elasto-
meric networks has been studied. The classical Flory theory
of strain-induced crystallization has been extended by incor-
porating the effects of constrains on the elastic properties of
network chains.

Section 10 has been devoted to the theoretical analysis of
filled polymer networks. This is a very important problem,
because fillers such as silica or carbon back are commonly
used to improve mechanical properties of elastomers, and
there is no molecular theory of filled elastomers. The new
theory of reinforcement by filler particles has been devel-
oped, by studying the effect of the excluded volume of
particles on the distribution of the end-to-end vector of
polymer chains.

In Section 11 a discussion of perspectives and possible
new developments in the statistical mechanics of rubber-
like networks is presented.

This paper is based on my work done in the time period
1987-1994 at the Polymer Research Center at the Depart-
ment of Chemistry of the University of Cincinnati, where I
had great pleasure in working with Professor James E.
Mark. Professor James E. Mark is the founder of the Univer-
sity of Cincinnati Polymer Research Center and is one of the
most eminent scholars in the field of rubber-like elasticity. It
was my great honor to collaborate with him, and make
several theoretical contributions to the field of rubber-like
elasticity. I would like also to acknowledge very fruitful
collaboration with Professor Burak Erman who was
frequently visiting University of Cincinnati. Professor
Erman was a longtime collaborator of the late Nobel Prize
Winner Paul J. Flory. Professor James E. Mark was also
associated with Flory during his postdoctoral work in
sixties. Many of the ideas and theories which were devel-
oped at the University of Cincinnati in collaboration with
Professors J.E. Mark and B. Erman, such as theory of chain
dimensions, or the diffused constraints theory of rubber
elasticity were inspired by fundamental pioneering works
of Flory.

2. Overview of classical theories of rubber elasticity
2.1. Kuhn—Treloar theory

The first theoretical molecular approach to the theory of
rubber elasticity was done by Kuhn in late thirties [1-3].
Other important early contributions to the early rubber elas-
ticity theory were seminal papers by Meyar, von Susich and
Valko [113] and by Guth and Mark [114]. A very good
review of history of early rubber elasticity was given by
Flory [115]. The theory Kuhn, Guth, Mark approach was
further developed by Treloar [4-5].

This element approach is based on the assumptions that
the rubber network consists on v freely-jointed Gaussian
chains. It is assumed that crosslinking of chains in the unde-
formed network does not change mean square end-to-end
distance of chains in respect to the uncrosslinked polymer
melt. This assumption is supported by data obtained from
neutron scattering experiments [6—8].

Another assumption is that the volume of the rubber
network does not change during the stretching, and that
positions of junctions (points of crosslinking) deform affi-
nely upon deformation. It is also assumed that the total free
energy of the network is the sum of free energies of all v
chains.

The elastic free energy of the deformed network is

2
0= om0 R0 = #(5:2;0 - 1) M)

writing (r*) in terms of the Cartesian components of the
deformation tensor A we obtain:

1
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where A = A, is the x-component of the deformation tensor
A\ (assuming that the rubber is stretched in the x direction),
and L, is the length of the undeformed rubber sample in the
direction of stretch.

The Khun-Treloar theory is very simple but gives pretty
good description of experimental data [6,9].

2.2. James and Guth theory of phantom networks

The theory of phantom networks was developed in the
forties by James and Guth [10—-17]. They assumed that the
network is composed of crosslinked Gaussian chains. They
assumed that there are two types of network junctions. Junc-
tions which are at the surface of the rubber are fixed and
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deform affinely with the macrospcopic strain, while the
junctions inside the network are free to fluctuate around
their mean positions. They assumed also that the behavior
of the network is determined only by the connectivity of
network chains. James and Guth neglected the effect of
the excluded volume of polymer chains. The chains in
their model are phantom-like, i.e. they may pass freely
through each other.

The configurational partition function Zy of the network
is the product of configurational particle functions of
network Gaussian chains [18]:

Zv=C[] exp[% > D R - Rj)z:l )
i

i<j

where C is a normalization constant and the matrix elements
vi(y= —+') are defined as:

3
——— if i and j are connected by a chain

v =1 ik (©)
0 if 7 and jare not connected

This means that all statistical properties of the network
depend on the connectivity matrix I' defined by the above
Eq. (6) [19]. One can easily calculate fluctuations of junc-
tions in the phantom network model, and correlations
between these fluctuations for the ideal infinite network
with the topology of the tree (with functionality ¢ of
network junctions). These quantities are related to the
matrix elements of the inverse matrix I' "', The mean square
fluctuations of the end-to-end vector ((Ar)?) of polymer
chains depend on the functionality ¢ of the network and
is given by the formula [20]:

(Ar)*y = %(”2% (7)

These fluctuations are assumed to be independent of the
macroscopic strain. The mean square end-to-end vector of
the chain ((r,-j)z) between junctions i and j can be written as:

)y = (@D + ((Ary)*) (8)

where <(ﬁ-j)2> is the time averaged mean square end-to-end
vector, and <(Arl-j)2> represents instantaneous fluctuations in
the chain vector r; from its average value Tj. It is also
assumed that average vectors transform affinely with the
macroscopic deformation of the rubber, i.e.

(F)%) = XAG) o + AT + AXG) o
1,
= @A+ A+ ) ©)

Because of this the elastic free energy of the phantom
network in the formulation by Flory [18] is

1
Map = 5 &T(AF + 45 + A2 - 3) (10)

where £ is so-called cycle rank [21,22] of the perfect tree-

like network defined as:

2
3 <1 ) ) v (11)
where ¢ is the functionality of junctions in the network (the
number of chains connected at each junction) and v is the
number of chains. Originally, according to the mathematical
graph theory, for any (even imperfect) network the cycle
rank is given as the number of scissions necessary to reduce
the graph to a spanning tree. By comparing Eq. (11) with
Eq. (3) for the Kuhn—Treloar theory, we see that the main
difference in the elastic free energy is due to the 2v/¢ term
which is related to the strain independent fluctuations of the
network.

The more detailed analysis of the phantom network
theory will be given in the following sections.

2.3. Affine model of rubber elasticity of Wall and Flory

The affine theory developed by Wall and by Flory [23—
29] assumes that junctions of the network transform affinely
with macroscopic strain. The expression of the elastic free
energy is similar to Eq. (3) of the theory of Kuhn. In the case
of swelling of the network there is an extra logarithmic term
associated with the volume change of the rubber
AA, = %va()\ﬁ +A A - 3) — %kT ln(vlo) (12)
where V is the volume of the network, and V, is the volume
of the network in the reference state in which the network
was formed. Here v is the number of chains and ¢ is the
network functionality. The affine model of the rubber elas-
ticity is very important, because it is a fundamental limiting
case in the constrained-junction theory of rubber elasticity
of Flory.

2.4. Constrained-junction theory or rubber elasticity of
Flory

In 1976 Flory published a theory of rubber elasticity,
which takes into consideration chain entanglements and
constraints occurring in real (non-phantom) polymer
networks [30]. The effects of constraints were also studied
earlier by Ranca and Allegra [31] and by Kaestner [116—
118]. The history of theoretical approach to this problem is
given by Burchard [119] and by Heinrich, Straube and
Helmis [120].

The main idea of Flory theory is that constraints effect
fluctuations of network junctions, compared to phantom-
like state of reference. This effect of constraining fluctua-
tions of junctions is measured by a parameter « in the theory
defined as:

(AR
T {As?) (13)

where ((AR)z)ph are mean square fluctuations of junctions in
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the phantom network, and ((As)z) is a mean square fluctua-
tion in the Gaussian distribution of centers of entanglements
in the undeformed state. As a result the constrained-junction
theory of Flory is intermediate between the phantom
network model and the affine network model. The elastic
free energy in the theory is given by the following
expression:

AA, = %ng S {(A} - 1)

1=x,y,2
+ %[B, +D,—In(B, + 1) — In(D, + 1)]} (14)

where w is the number of junctions, £ is the cycle rank (see
Eq. (11)) and B, and D, are defined as:

Kz(/\f— 1)
B=— 1 t=xyz (15)
T2+ k)
B
D, =N t=xy,z (16)
K

It is easy to show that in the limit k = O the elastic free
energy in the constrained-junction model becomes identical
as in the phantom network model (Eq. (10)), while in the
limit k — oo it is similar as in the theory of affine networks
(Eq. (12)).

The parameter « of the constrained junction model can be
interpreted in terms of the molecular constitution of the
network as [32]

o\ 32
k=1 2]\;“01 ( <Zv1>0 ) M (17)

where I is proportionality constant, ¢ is the functionality of
the network, N, is Avogadro number, d is the network
density, M, is the molecular weight of a chain with end-
to-end mean square length (r*)o. The constrained chain
theory was refined later by Erman and Flory [33,34].

2.5. Edwards replica and tube theories

A different approach to the rubber elasticity was devel-
oped by Deam and Edwards in 1976 [35]. The Edwards
approach is based on his earlier works on replica theory
developed for solid-state physics in application to amor-
phous systems. The replica method has been introduced
by Edwards to perform statistical mechanics averaging for
amorphous systems subject to both internal and external
constraints. Because the theory leads to complicated mathe-
matics, the details are skipped here. The main advantage of
this approach is that crosslinks could be considered in detail,
and various approximations can reduce this theory to other
classical theories. The affine and phantom networks become
also limiting cases of the Edwards and Deam theory of
rubber elasticity.

The replica method was used later by Ball, Doi and

Edwards to develop the slip-link model of rubber elasticity
[36]. They calculated the effects of entanglements along the
chain contour on the elastic free energy. The slip-link may
slide along the chain contour and is equivalent to an addi-
tional crosslink in the network. The final expression for the
elastic free energy in this model is

1 N,
AA, = —NkT N4 s
el ) c { Z t Nc

=x,y,2

2
x> [% +1n(1 + nA?)]} (18)

=X,z

where N, and N, are the number of chemical crosslinks and
sliplinks, respectively, and 1 = 0.234. The slip-link model
has been later modified by Edwards and Vilgis [150].

Another model developed by Edwards is the tube model
[136] based on the idea of harmonic-like tube constrains in
elastomeric networks. This idea have been applied by de
Gennes [137,138] within the framework of reptation theory,
to the dynamics of uncrosslinked polymer melt. According
to the tube theory polymer is trapped inside a tube of
diameter a and length L, formed by constraints from neigh-
boring crosslinks and chains. The elastic free energy in the
tube model is larger than the free energy in the Kuhn model,
because of the additional contribution of entanglements to
the elastic modulus. A good review of tube model theories is
given by Edwards and Vilgis [39].

The excluded volume interactions for polymer chains
have been studied by Muthukumar [133,134] and Freed
[135].

2.6. Other theories of rubber elasticity

In 1963 Brodowsky and Prager [106] developed a
Debye—Hucke-like theory of a polymer network by treating
it as a mixture of crosslinks with infinite functionality with
bifunctional monomer. A similar approach has been
recently used by Paul, Schulz and Frish [107] who derived
the equation of state of a Gaussian phantom network by
assuming that the network is a gas-like mixture of crosslinks
with defined functionality and Guassian chains.

The main idea of tube model proposed originally by
Edwards [136] and discussed earlier has been used by
several other authors.

Marruchi, [139] Gaylord and Douglas, [140,141] Heinrich
Straube and Helmis [120] and most recently Rubinstein and
Panyukov [142] developed tube-type theories very success-
fully in the theoretical interpretation of the experimental
data. In all these theories the free energy is a sum of a
Gaussian term due to the chain connectivity and additional
term due to entanglements. The difference between these
theories arises mostly by using different assumptions
about the dependence of the tube diameter on the macro-
scopic deformation.
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Fig. 1. First three tiers of a unimodal, symmetrically grown treelike network
with functionality ¢ = 4.

Eichinger have applied many concepts from the mathe-
matical graph theory especially the concept of the Kirchhoff
matrices to the theory of rubber elasticity [143—145].

Gressley [146,147,149] developed a model of restricted
junction fluctuations based on a concept of trapped entan-
glements proposed by Langley [148]. It is assumed that
during the crosslinking process some entanglements are
‘trapped’ and act as physical junctions.

Polymer networks have been studied extensively by
computer simulations, although simulations of crosslinked
polymer networks are much more difficult than simulations
of uncrosslinked polymer chains. A very good review of this
subject is given by Kremer and Grest [124]. The simulations
of dense polymer networks were performed by using both
Monte Carlo [125] and molecular dynamics [126] methods.
The elastic properties of networks and the effect of topolo-
gical constrains have been studied extensively by Kremer
and Everaers in a series of papers [127-132].

3. Chain dimensions and fluctuations in random
elastomeric networks

Chain dimensions and fluctuations in random elastomeric
networks were studied by Kloczkowski, Mark and Ernam
[37,38]. The behavior of phantom Gaussian networks in the
underformed state was studied in detail. The partition func-
tion of the phantom network is

Zy, = Cexp[—{AR,}'T {AR,}] (19)

where {AR.} is the vector of fluctuations of the set {7} of
the free junctions, and I'; is the connectivity matrix with
elements 7y, defined as

3

_2 if i and j are connected by a chain
Vi = 2<rij>0 (20)

0 if i and j are not connected

and the diagonal elements are defined such that the
summation of all matrix elements in a given row (or

column) is zero

Yii = _Z%j 21
J

It can be shown that the fluctuation of a junction i,
((AR;)*) is related to the element I" i ! of the inverse of the
connectivity matrix I', and more generally the correlations
((AR;-AR))) are related to F,«;l

3 -
((AR;-AR))) = Erlj ! (22)

The elements of the inverse matrix were calculated analy-
tically for the network with the topology of the infinite tree,
composed of chains of equal length (unimodal network),
with equal mean square end-to-end distances (1), in the
undeformed state. It was assumed that the network has func-
tionality ¢, i.e. that each free junction connects exactly ¢
chains. Fig. 1 shows an example of such a tree-like network
with functionality ¢ = 4. It is possible to derive the recur-
rence relations between fluctuations of junctions in the
neighboring tiers of the tree. The simplest case is when
junctions i and j are directly connected by a singly chain.
For the infinite tree (infinite number of tiers) of unimodal
chains the solution of the problem converges to the follow-
ing simple formula

[ (AR <<ARi-AR,->>]
((AR;AR))  ((AR)®)

d—1 1
-2 -2

_ o ¢><¢1 ) ¢;¢_ 1) o)
Ho—2 b2

where ¢ is the functionality of the network. Because of this
fluctuations ((Ar,:,-)2> of the distance r; between any two
junctions i and j in the network connected by a single
chain are

2
(Ary)*y = g(”?)o (24)

In the case of two junctions m and n separated by d other
junctions along the path joining m and n, the solution of the
problem is

[ (AR,)”)  ((AR,-AR,)) ]
<(ARm'ARn)> ((ARn)2>
¢d—1 1
) D —2) AP — 2)(¢p — 1)
={(r >0 1
d—1

(b —2)(¢ — 1) Hd—2)

(25)
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Fig. 2. Tetrafunctional network with additional bifunctional junctions
which separate each chain into n = 4 subchains of equal length.

and the fluctuations ((Ar,,,)>) of the distance r,,, are equal

2 @-D" -1
Hb—=2d+1) (b= 1)

The problem can be also solved for the general case
of fluctuations of points along the chains in the network
and correlations of fluctuations among such points. To
deal with this case we may assume that each chain
between two ¢ functional junction is composed of n
Gaussian segments connected by bifunctional junctions to
form a chain as shown in Fig. 2. Because of this the diagonal
elements y; of the connectivity matrix are ¢ if the index i
corresponds to the ¢ functional junction and 2 for the
bifunctional junction. The off-diagonal elements vy, are
—1 if i and j are directly connected by a chain segment,
and zero otherwise.

Similarly as before the recursion relations between the
elements of the inverse matrix I'"! can be derived. For the
infinite number of tiers in the tree-like network the solution
of the problem has the following form

((Ar,,)*) = (b (26)

[ ((AR)*) «ARWA&»]

((AR-AR))  ((AR)?
¢-1 -0 -2)
, H(p—2) )
=<V >0
1 P ) (R VIl l)
P —2)(p — 1) ¢

Here { =i — 1/n and 0 = j — 1/n are fractional distances
of sites i and j from nearest ¢-functional junctions on their
left side (as shown in Fig. 3) with 0 < {, § < 1, and d is the
number of ¢-functional junctions between sites i and j. The

above formula is also valid when 7 and j belong to the same
chain (i.,e d =0) and ¢ < 6.
Fluctuations <(Ar,-j-)2> of the distance r; are equal

oy Y-, 1
(@r { Kb —2) [1 =1 ]

b -2 [+ 60— 206
1— 61 —-—60— ———
+ 2 Pt 0+ 61— 6) w—nd]
—d
+g£tqp}v%o (28)

where 1 =d + 6 — { if point i is on the left side of point j
(or n =d + {— Oif point i is on the right side of point j). In
a special case when points i and j are on the same chain (i.e.
d = 0) then

(Ary?) = {n — (‘ﬂ% n2}<r2>o (29)

The above results are important for studies of elastic
properties of phantom networks. It is assumed that instan-
taneous fluctuations of all distances in the network are inde-
pendent of the macroscopic deformation, and only mean
distances transform affinely with the deformation, i.e.

T = AFjo 30)

Because of this the x-component of the mean-square end-
to-end vector changes with deformation as

2
(&) = A1 = ) 3
¢
Similarly for two points i and j on a chain we have

@p=ﬁ@—%yﬁ%=§ﬁﬁ—%yﬂo (32)

Because most models of real networks use phantom
network as a reference state for the construction of the

1 L LF 46— Db~ 1) — 0~ 2)]
-2 1) ¢
$—1 , 1= 60S—2)
(b —2) ¢
@7

real network models, these results are also important for
real models of rubber elasticity. The most straightforward
application is the analysis of the small angle neutron scatter-
ing from labeled paths in the rubber network.
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¢ 0

) )
' j
Fig. 3. Two points / and j of the network separated by d = 3 tetrafunctional
junctions. The positions of points / and j are measured with respect to the

nearest multifunctional junction from the left as fractions ¢, 6 of the
contour length of the chain between multifunctional junctions.

4. Small angle neutron scattering from random
elastomeric networks

The small angle neutron scattering methods enable
experimental verification of theories of rubber elasticity.
The change of the shape of polymer chains under external
deformation can be experimentally measured [7,8,40,
152,153]. Small number of polymer chains in the network
is labeled by deuteration, and these chains are monitored
during SANS experiments. The experiments measure the
form factor S(g) defined as:

N

S(@=N")» Jeiq'rv(z(r,-j)dr,-j (33)
ij=1

where q is the scattering vector, {2(r;) is the distribution

function of scattering centers and the averaging is taken

over all N labeled scattering centers. For Gaussian (2(r)

the form factor is

2

N 2 2
_ 2 @
S@=N"7> eXP[——q2 () — > oy — 1

5 <z?j>] (34)

ij=1
The problem of SANS from labeled chain in the phantom
network was studied first by Pearson in 1977 [20]. The same
problem was later studied by Ullman [41,42]. Warner and
Edwards [121] calculated the scattering form factor S(q) of
randomly crosslinked networks by using replica method.
Pearson studied the scattering from a single labeled chain
attached between multifunctional junctions. The fluctua-
tions of the mean square distance between center i and j
along the chain are given by Eq. (29) and the x-component
of mean square distance between sites i and j changes upon
deformation as

2
(5) = {Aﬁ s (1) B }<x;‘;->o (35)

<xi2j>0

and so therefore

1 (-2
2y 1 2 _ 2 _ 2 2
()= 3 {nAx +(1 Ax)[n 5 ]}<r o (36)
Eq. (36) (and similar equations for y and z components)
can be substituted to Eq. (34), and summation over N can be
replaced by integration leading to the following result

obtained by Pearson [20]

1

" -2
@ =2 dn 1 = mexpl -vnft —n1 A 2)%}}

(37)
where v = ¢*(r*)y/6 and the vector X" is
A = Ad/g (38)

fe. N2 = (qﬁx\% + qf)\f, + qf)é)/qz. For scattering paral-
lel to the direction of extension A* = A and for scattering
perpendicular to the direction of extension A* =\, =
1/\/)\7” . Pearson result is applicable only to a single chain
with no crosslinks along the labeled path.

These results were generalized by considering a labeled
path with several multifunctional junctions [43—45]. By
using Eq. (28) for fluctuations of points i and j separated
by d ¢-functional junctions the following equation for the
form factor S(q) can be derived

1 n n 1 1 By
S@= -3 >y JOdOJOdéexp{ - U[A *ln; + 6 — n,

n=1 n=1

| 20— 1 1
1— A" 1-
+4+( )[¢(¢_2)[ (¢_1)|4,—n,.]
-2 [+ 6—200
1-p+601—-0)- 27"
T [g( Qe (¢—1>'"f"f]

n- |nj - ”i|
T e ]]} &

In the case when there are no crosslinks along the path
(d = 0) this formula reduces to Eq. (37).

The scattering form factor given by Eq. (39) may be
easily evaluated numerically. The results can be shown as
Kratky plots of 4>S(q) vs. the scattering vector for varying
length of the labeled path both in the undeformed and
deformed state. In the undeformed state qu(q) decreases
with increase in the length of the path. This is due to the
fact that correlations between points on different chains
decrease rapidly as the number of crosslinks separating
them increases. The main contribution to the scattering
form factor is by points belonging to the same chain.

Since S(q) is given by the double sum (1/n%) D=1 2=
and there are only n terms in the sum when n; = n;, S(q)
behaves approximately as n~' for large number 7 of chains
in the path. The Kratky plots for undeformed, unswollen
networks show no maxima with respect to the scattering
vector q. Kratky plots for deformed, unswollen networks
for scattering wave vector parallel to the direction of stretch
also show no maxima, as shown in Fig. 4. For scattering in
the direction perpendicular to the direction of stretch and for
sufficiently long paths, a maximum is observed in the
Kratky plots (see Fig. 5). This shows satisfactory agreement
with experimental data, because experimental Kratky plots
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Fig. 4. Kratky plot for the unswollen deformed network (A = 4) for the
scattering parallel to the principal axis of deformation for varying number d
of cross links along the path.

show maxima for scattering from labeled paths in the direc-
tion perpendicular to the direction of stretch [46—48]. Such
maximum does not exist for scattering from a single chain
and this shows that this experimental maximum can be
explained even by a simple phantom network model.

The problem of correlations among chains in a cross-
linked path was studied in Ref. [44]. All authors studying
the problem of SANS from labeled paths earlier used the
assumption that different chain vectors along the path are
uncorrelated both in the undeformed and in the deformed
states. Ullman improved the theory by removing the
assumption that different chain vectors of the path are
uncorrelated in the deformed state [42]. However, in
the undeformed state, he used the assumption that the differ-
ent chain vectors are uncorrelated i.e. the path is freely

T T T T T
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[44 , =05
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<
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Fig. 5. Kratky plot for the unswollen deformed network (A = 4,i.e. A} =
0.5) for the scattering perpendicular to the principal axis of deformation for
varying number d of crosslinks along the path.
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Fig. 6. The comparison of form factors obtained by using Eq. (41) (dashed
lines) and Eq. (42) (solid lines) for labeled paths with varying number d of
crosslinks along the path for the unswollen, undeformed (A = 1) network.

jointed, so
(rido = n(r*)o (40)

where r;; is the vector between points i and j on the path, r is
the end-to-end vector for a chain between two consecutive
cross-links along the path and 7 is the ratio of the contour
length between i and j to that of a chain between two conse-
cutive cross-links. In Eq. (40) angular brackets denote
ensemble averages and the subscript zero identifies the
undeformed state. For two instantaneous VeCtors I, ,+i
and r, ., joining junctions m with m + 1 and n with n + 1
along a path, this assumption implies

<rm,m+1 'rn,n+l>0 =0m#n (41)
We replaced this assumption by
<l_.m,m+1'1_.n,n+1>0 =0m#n (42)

where the overbar denotes time averaging. We think that Eq.
(42) is more plausible for cross-linked paths in a phantom
network. Eq. (42) postulates that in the undeformed state the
distribution of the mean end-to-end vectors in the ensemble
is isotropic. From the statistical—-mechanical point of view
the cross-linked system differs significantly from the
uncross-linked one. Eq. (41) has been originally derived
for free chains where both ensemble and time averages
are the same. For the crosslinked system we must distin-
guish between time and ensemble averaging and the
symmetry of the ensemble requires that Eq. (42) rather
than Eq. (41) is satisfied. The scattering form factors S(q)
were calculated using both assumptions given by Egs. (41)
and (42). Fig. 6 compares the Kratky plots obtained by using
these two different assumptions. For small number of cross-
links along the labeled path there is almost no difference
for Kratky plots between these two assumptions. For
larger number of crosslinks along the path Eq. (42) gives
more pronounced maxima for scattering in the direction
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perpendicular to the direction of stretch. The most interest-
ing result is that the maximum on Kratky plot can be
obtained for labeled path with many crosslinks even in the
undeformed state. Most of experimental data show no
maxima on Kratky plots for scattering from labeled paths
in undeformed, unswollen networks, although in some cases
a very small maximum may be observed. Our calculations
have been performed for the phantom model of the polymer
network. Real networks are not phantom. Entanglements
and steric effects in real networks are very important and
contribute even more significantly to the scattering proper-
ties of networks.

5. Bimodal networks

Most of the elastomeric networks studied theoretically
are unimodal, which means that all chains have the same
length. The unimodality of the network simplifies greatly
analysis of the model. The unimodal network is also a good
approximation for most of real networks where chains have
no exactly the same length, but there is a distribution of
chain lengths centered about a single mean value. The
recent advance in network synthesis enables formation of
bimodal networks composed of two types of chain: long and
short ones. Such bimodal networks show interesting elastic
properties [49].

Random bimodal networks were studied theoretically by
Higgs and Ball [50]. In Ref. [51] Kloczkowski, Mark and
Erman presented an exact analysis of bimodal phantom
Gaussian networks with a regular structure; i.e. with fixed
number ¢g of short and a fixed number ¢ of long chains at
every ¢-functional junction, so that ¢ = ¢s + ¢. An
example of such regular bimodal network is shown in Fig.
7. It was assumed that both short and long chains have
Gaussian distribution of the end-to-end vector. The phantom
network model of such regular bimodal network was formu-
lated. The analysis is similar to the analysis of unimodal
networks (Egs. (19)—(22)). The problem of fluctuations of
junctions and chain dimensions is again related to finding
the inverse of the connectivity matrix I" of the network. For
unimodal network all off-diagonal elements of the connec-
tivity matrix were zero or y= —3/(2(r%),) depending if
sites i and j were directly connected by a chain, and diagonal
elements were equal — ¢y.

Because of this the common factor y could be removed,
and the connectivity matrix was integer matrix with
elements 0, —1, and ¢. For bimodal networks the connec-
tivity matrix is real matrix. The elements vy; are zeros if
site i and j are not directly connected by a chain. If sites i
and j are connected then 7, equals 7yg if the chain con-
necting sites i and j is a short one, and vy if the chain is
long. The diagonal elements of the connectivity matrix are
(=dsys — by

Similarly as for unimodal networks the inverse of the
connectivity matrix for the infinite tree can be calculated

22

Fig. 7. Regular bimodal trifunctional network composed of four tiers. Each
junction in the network is connected to one short chain and two long chains.

using recursion relations. The solution of the problem is
given by a set of two equations for two unknowns A and B

A= dye - D
1 43)
R -

where & (0 < ¢ < 1) is the ratio of the linear length of short
chains to long chains. This set of equation leads to the
following algebraic cubic equation for B

B (1 = ) + B¢ (¢sb — 25 — L + 1)

+ L — 21+ BIE (45 + ¢ — 1)

+ & Qs + ¢ — 261)]

— & (ds — Digs + ¢ — 1) =0 (44)
and A equals

BB - ED + 4B
B 2B

A (45)
The fluctuations of junctions in regular bimodal networks
are

(AR%) _ A B

(T A1 B g2

(46)

and the correlations of fluctuations of two junctions are

(AR)[-AR),). 1
(r) A @7
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Fig. 8. Mean square fluctuations of junctions ((ARi)z) normalized by the
mean square length of long chains for various regular bimodal trifunctional
(dashed lines) and tetrafunctional (solid lines) networks. The subscripts m
and # in the notation S, L, stand for the number of short chains () and long
chains (n) connected at each junction.

if junctions are connected by a long chain, and

((AR;-ARy))s _ 1
(rgho £B -1

(48)

if junctions are connected by a short chain. Here (rf)o and
(r§)0 are mean square end-to-end vectors for long and short
chains, respectively.

The fluctuations of junctions, and correlations of fluctua-
tions of junctions connected by chain were calculated as a
function of the ratio ¢ of the length of short chains to long
chains, for various regular bimodal networks. For trifunc-
tional network (¢ = 3) there are two types of regular bimo-
dal networks: the first one with one short chain and two long
chains at each junction (which can be abbreviated as S|L,
network) and the second type S,L; (with two short chains
and one long chain). For tetrafunctional networks (¢ = 4)
there are three types of regular bimodal networks, namely:
S]L3, Ssz, and S3L1.

Fig. 8 shows the results obtained for various possible
regular bimodal trifunctional networks. Calculations show
that fluctuations of junctions increase with the length ratio
&, and with the number of long chains ¢; at each junction
(with functionality of the network ¢ = ¢g + ¢ kept fixed).
Correlations between fluctuations of two junctions also
increase with ¢, but decrease with & for junctions
connected by a short chain, and increase with ¢ for junctions
connected by a long chain.

The knowledge of fluctuations of junctions in the
bimodal network and correlations among them enables
one the calculation of fluctuations of the end-to-end vector
for short chains {(Ars)?) and long chains {(Ar;)?) in the
network.

These fluctuations are

(Ar) _ 2
<r§>0 B§+ 1

(49)

1 T 1T 1T 1T 1T T T
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14 .--".’.:'-"'-""/s’l"
e 8ot
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Fig. 9. Kratky plot for neutron scattering in the direction parallel to stretch
from labeled short (dashed lines) and long chains (sold lines) for various
regular bimodal trifunctional networks.

and
(Arp)? 2
B AT (50)

for short and long chains respectively.

Similarly as for unimodal chains we can calculate small
angle neutron scattering from a labeled chain in a regular
bimodal network. The scattering form factor for the scatter-
ing in the direction parallel to the direction of stretch is:

1
Sif@ = ZJ dn(l = n) eXp{ - v[Aﬁn +(1 -2

2
)| s

v=q*(")/6 (52)

with

The scattering in the direction perpendicular to the direc-
tion of stretch is obtained by replacing A in Eq. (51) by
A= 1/\/)\—” .

The bimodal network is composed of two types of chains,
long and short ones. If short chains in the regular network
are labeled then the scattering form factor for short chains is
obtained from Eq. (51) with (+*)y = (rd), by replacing
{(Arg)YK(rd))o by Eq. (49) and solving Eq. (44) for B. If
long chains in the regular bimodal network are labeled, the
corresponding scattering form factor is obtained from
Eq. (51) with (r*)y = (r}), and relative fluctuations of
long chains ((Ar)*YX(r))y given by Eq. (50).

Fig. 9 shows the results obtained for various regular
trifunctional networks. Kratky plots of vS(») for scattering
in the direction parallel to the direction of stretch show that
the scattering form factor S(v) increases with the number ¢,
of long chains connected to each junction. There is no
experimental SANS data for bimodal networks at the
moment to compare with theoretical predictions. Bimodal
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networks have been recently studied by using small angle
X-ray scattering (SAXS) methods [122,123]. These experi-
ments show that for bimodal networks exhibit scattering
intensity maxima at significantly lower scattering vector q
than unimodal networks [123].

6. Dynamic properties of Gaussian networks

The dynamics of polymer chains has been studied by
many authors [52—-56]. The first important paper addressing
this problem was written by Rouse [52]. He assumed that
linear chain in solution could be modeled as a collection of
beads, connected by spring-like subchains, subject to the
stochastic Brownian forces. Zimm improved later this
model by adding hydrodynamic forces [54]. The Rouse—
Zimm model is successful in prediction of the low
frequency relaxation spectrum of chain molecules. This
approach was used also to study dynamic properties of elas-
tomeric networks.

Graessley used this method to study relaxation spectrum
of tree-like micro-networks composed of few tiers [57]. He
assumed that network is composed of ¢-functional junc-
tions which are beads subject to stochastic random forces,
connected by Gaussian spring-like chains. The structure of
these chains is neglected in the analysis.

Kloczkowski, Mark and Frisch [58] proposed a more
detailed model of the network, with chains between
¢-functional junctions composed also of beads (bifunc-
tional junctions) connected by Gaussian subchains (such
as a network shown in Fig. 2). This model is much more
realistic and therefore gives much better insight into the
dynamics of real networks.

If (R, Ry, ...Ry) = {R,} are positions of beads (multi-
functional and bifunctional junctions) then the motion of
each bead is determined by the force balance

Fdrag + Fspring + Fstochastic =0 (53)

which may be written as

d{R,}

~(=" KT(R,) + (£,) =0 (54)
Here { is the frictional coefficient, taken to be the same
for each bead regardless of its functionality, K is the spring

constant defined by:
K = 3kgTHr?), (55)

where (r2)0 is the mean square end-to-end distance for the
unstretched subchain, kg the Boltzman constant, 7T the
temperature, I' the connectivity matrix and {f,} a set of
random, stochastic forces acting on beads located at {R,}.
The connectivity matrix has very regular structure with
elements contributed from multifunctional junctions and
from bifunctional junctions. Such matrices were studied in
detail in Ref. [37].

The eigenvalues A; (i = 1,2,...N) of the connectivity

matrix I' are solutions of the characteristic (secular)
equation

det(T' — ALy) = 0 (56)

where I is identity matrix of order N. Each eigenvalue A; is
associated with the relaxation time of the ith model
70

i =1,2,..N 57
Y i (57)

T =
Here 7, is the primary relaxation time of a single unat-
tached subchain

{

T = K (58)
determined by the frictional coefficient { of the beads and
the spring constant K (given by Eq. (55) of a subchain. For a
very large system in the limit N — oo the distribution of
eigenvalues A(¢) and relaxation times 7(€) is described by
continuous variable £, and the relaxation spectrum H(7) is
defined by:

d¢
dlInTt

where v is the number of beads per unit volume. The relaxa-
tion modulus G(7) is defined as an integral of the relaxation
spectrum H(7)

H(7) = —vkgT (59

Gt =G, + I H(t)e ""dlInt (60)
or alternatively
l At
G@t) =G, +kaTZexp<——') (61)
i=1 7o

where G. is the equilibrium shear modulus of the network.
The main problem in calculating the relaxation spectrum
H(7) and relaxation modulus G(7) is to solve the eigenvalue
problem. The characteristic equation for eigenvalues of the
connectivity matrix I' is given by product of determinants
det(I'; — Mly) of submatrices I'; corresponding to subse-
quent tiers (1 =j = J)

J
det(I' — Aly) = [ Jdet(I'; — ALy)
Jj=1 '

= [a U, (x) = U,_s(X)]"™ [a,U,—(x) — U,_r ()" X...
X[ay-1Up—1 () = U2 (01" (a3 U, -1 (x) = 2a;U, _»(x)
+ U,—3(x)}

=0 (62)

with coefficients g, satisfying the recurrence relation

(¢ — Dlag—1U,—>(x) — U,—3(x)]

= — A —
w=¢ a1 Uy (x) = Uyr(%)

(63)

and Ui(x) denoting the Chebyshev polynomials of the



1514 A. Kloczkowski / Polymer 43 (2002) 1503-1525

second kind U, (x) = sin[(n + 1) x]/sin[arccos x]. The final
equation for eigenvalues has the following form:

u1-3)+@-20,(1-5) - @-vu,1 -

;)

0|

U,
k 2Jb—1

Un(l - %) (- 2)UH(1 - %) —(¢- I)UH(I - %)

=0 (64)

+WUH(1 - %)U,H

for 1 = k =J — 1. Eq. (64) is a highly complicated double
Chebyshev polynomial of order kn in A. It can be shown that
when the number of tiers of the tree goes to infinity the
asymptotic solution of the problem is

A A A
Un(l - 5) (- 2)U,H(1 - 5) — (- 1)UH(1 - 5)

=2y/¢p — 1cos il (65)

k+1

with r = 1,2...k. Eq. (65) represents the simplified analyti-
cal solution of the eigenvalue problem for the network.
Instead of a polynomial of the order nk in A (Eq. (64)) we
have a set of k polynomial equations of order n. Eq. (65) can
be solved analytically for n = 1 or 2, and numerically for
the larger number of chain beads n.

The relaxation spectrum of the network is given by
equation:

[U,(x) + (b — 2U)—1(x) — (¢ — DU}, _o(x)]
VAo —D—[0,0 F (¢ —2DU,_ ;0 — (¢ — DU,_,0I
(66)

where

[(I’l + Z)Tn+l(x) - Un+1(x)]
(67)

d
! = — =
Un(x) - ] Un(x) x2 _ 1

A To
r=lmg =ity

Here T,(x) denotes the Chebyshev polynomial of the first
kind T, (x) = cos(n arccos x).

It can be shown that the relaxation spectrum H(7) satisfies
some mathematical inequalities, which give the band struc-
ture of the spectrum. The complexity of this band structure
increases with the number of beads n of network chains.
This is shown in Fig. 10.

2Jb -1

The relaxation modulus G(¢) of the network is
1
G(t) =G, + —”kBTe‘z”TOJ dx
v —
2ty ryr! _ ! _ _ !
e UL) F (= U1 (%) — (¢ — DU, ()]

VH$ =1 — [0, + (¢ = 2)U,—1(x) — (¢ — DU, ,()I?
(68)

where G, is the equilibrium shear modulus of the network,
and the integral is defined only for bands with positive slopes.
The inclusion of bifunctional junctions (beads) along the
chain considerably broadens the relaxation spectrum of the
network and gives a more realistic description of the spec-
trum at shorter times. The new theory has been very useful
in interpretation of recent experimental data [59,60,151].
A new theory relaxation spectra and viscoelastic dynamic
properties of polymer networks with interchain friction and
long-range hydrodynamic interactions have been recently
proposed by Gotlib and Gurtovenko [108—110]. These
authors in collaboration with Kilian extended the theoretical
treatment to heterogenous polymer networks [111,112].

Lol

4+

P
o f

Fig. 10. Relaxation spectra for trifunctional network for different number n
of subchains between junctions. The case n = 1 corresponds to Graessley
spectrum. Dotted lines correspond to unphysical negative H(7).



A. Kloczkowski / Polymer 43 (2002) 1503—1525 1515

7. Effects of constraints along polymer chains

Real elastomeric network exhibit properties that fall
between those of the affine and phantom models, discussed
in Section 1. The first theoretical model of real polymer
networks was developed by Flory in 1976 [30]. He devel-
oped the constrained junction model of rubber elasticity,
discussed briefly earlier. In real networks the excluded
volume and entanglements effect the elastic behavior of
polymer chains. A parameter which measures the effect of
chain constraints is the degree of chain interpenetration in
the network, defined as the average number of spatially
neighboring junctions within the domain of fluctuations of
a given junction in the network.

In the constrained junction network model a given junc-
tion is assumed to be under the joint action of the phantom
network and the constraint domains. The effect of constrain-
ing fluctuations of junctions is measured by the parameter «
in the Flory theory defined by Eq. (13). The elastic free
energy is given by Eq. (14) with variables B, and D, (for
Cartesian components ¢ = x, y, z) defined by Eqgs. (15) and
(16).

Experimental data for rubberlike materials usually are
shown as Mooney—Rivlin plots of the reduced force [f*]
as a function of the inverse of elongation a ~'. The reduced

force (or a modulus) [f] is defined as:

1= (69)
where fis force, where A4 is the cross-sectional area of the
sample in the dry state, and v, is the volume fractions of the
polymer in the network in the final state. The reduced force
[f*] at uniaxial deformation for the constrained junction
theory of Flory is

a—a?

, . 2 K(AD) — o 2K(A3
[f*]z[f]ph=[1+¢_2[“ M) —a (“)]]00)

where A, = A and )\2:)\_1/2, [f*]p}1 is the phantom
modulus

(1 - %)VkTv%/f
[f*]ph R — (71)
d

where v,. = V4/V, and V, and V, are volume of the network
in the dry state and in the reference state, respectively.
The function K(A?) is defined as:

BB DD
_|._

K(\?) =
M =Tt o+

(72)

with B(A?) and D(A?) given by Egs. (15) and (16) and

B= aB—B[ b 2 ] (73)
a2 IR —-1 A +«k

and

oD 1
Nk

The reduced force [ £] in the constrained junction theory
of Flory lies always between the modulus of the affine
network [f*],¢ and the modulus of the phantom network
[ f*]p}1 (given by Eq. (71), irrespective of the elongation. In
the limit k = 0 Eq. (70) gives the phantom modulus, while
in the limit k = oo it reaches the affine modulus.

Erman and Monnerie [61,62] used Flory’s idea of
constraints effecting fluctuations in real networks, relative
to fluctuations in phantom networks, but with constraints
effecting fluctuations of the centers of masses of chains,
instead of junctions. The elastic free energy in their
constrained chain theory is given (similarly as in the
constrained junction theory) as a sum of free energy of the
phantom network and the contribution due to constraints on
chains. The later part has identical mathematical form as in
the constrained junction model

(M’B + B) (74)

1
Adc = S kT > [B,+D,—InB, + 1)~ In(D, + 1]

1=Xy,2

(75)
and only B, and D; are defined differently, namely
hicg(1 = DA = 1)
B, = 76
and
X’B
D=2 (77)

where the parameter h is a function of the macroscopic
deformation tensor A

h(A) = kll + (AF — 1)@ (78)

Here the parameter @ is given by the formula

o-(-2G2)

The parameter kg is a measure of the strength of
constraints effecting the fluctuations of the center of mass
of the chain in the phantom network, and is defined similarly
to the parameter « (Eq. (13)) in the constrained junction
theory as a ratio of fluctuations of the center of mass of
the chain to the domain size of the constraint affecting fluc-
tuations of the center of mass of the chain.

The constrained chain theory of Erman and Monnerie
leads to the following expression for the reduced force
(modulus)

. ) ¢ [aK(A]) — o *K(A)]
[f]z[f]ph[1+¢_2 — (80)
where A; = Aand A, = A~ 2, [f*1pn is the phantom modu-

lus, the function K(A?) is defined as previously by Eq. (72),
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but with B(A?) and D(A?) now given by Eqs. (76) and (77).
The reduced force in the constrained chain model converges
to the phantom modulus in the limit k5 = 0, but for suffi-
ciently large value of k; exceeds the affine modulus.

In real networks constraints do not affect only fluc-
tuations of junctions, or fluctuations of the center of
mass of the chain. The constraints are distributed
uniformly within the network and they affect fluctuations
of both junctions, and all chain segments. Kloczkowski,
Mark and Erman [63] formulated the new theory which
addresses these problems. The constraints in this theory
which is called ‘diffused-constraint’, are applied continu-
ously along chains.

The probability of the fluctuation AR; of the point i
(located at the fractional distance 6 from one of chain
ends) from its mean position in the phantom network is

P(AR;) = C exp =1 Y 3 (AR,
L AL (1 - —)9(1 - 6)
d(d—2) ¢
81)
with
3
" w, )

where C is the normalization constant and 6 is the fractional
postion of point i along the chain (see Eq. (27)). If the point i
of the chain is under the joint action of the phantom network
and the constraints then following the treatment of Flory the
joint probability of having point i at dR; in the real network
is

P(3R;) = CP(As)P(AR;) (83)

where P(As) is the distribution of constraints which was
assumed by Flory to be Gaussian and affine under deforma-
tion. The distribution P(As) is independent of the position of
the center of constraints, if on average constraints are
uniformly distributed inside the network. We assume that
the Gaussian parameter s, of distribution P(As) is the same
for all points i along the chain, and is the same as in the
constrained junction theory of Flory. The probability of the
fluctuation of the point i along the chain from its mean
position in phantom network A; in the presence of
constraints P*(AR)) is given by the convolution

P*(AR;) = P(3R,)" O(AR) (84)

where O(AR) is a Gaussian distribution independent of
deformation.

Following Flory’s arguments it may be shown that the
distribution P*(AX;) for the x-component of the point i on
the chain in the real network in the presence of constraints is

(with similar equations for y and z components):

/

P*(AX)) = S — e
(AX;) = Cexp 20I— 1) (AX;) (85)
1+ ————
(A7 + ®)°
with
/ Y
o = (86)
s ()
+{1——)6(1—86
b2 )"0
The parameter « in Eq. (85) is now point i-dependent
function
_ (o)) _ (o)) ¢_ 1 ( 2) ]
O=—=—|——+(1—=)01—-90 87
0= =% 565 A B

Following the arguments used by Flory in the constrained
junction theory the elastic free energy of the constraints
effecting fluctuations of the ith segment of network chains is

AA(6) = %VkT Z [B;(6) + D,(6) — In[B,(6) + 1]

1=X,y,2

— In[D,(6) + 11] (83)
with

Kz(o)(A? - 1)
B(0) = ——— " (89)

[A? + x(6)]
and

_ B(OA

D,(0) = <0 (90)

Because the constraints are affecting fluctuations of all
points along the chain, the averaging of the free elastic
energy of constraints is performed over all segments of
the chain which leads to:

1
M= lur ¥ I W(O)[B,(6) + Dy(0) — In[B,(6) + 1]
2 0

1=x,y,2

— In[D,(6) + 111d6 on

Here W(6) is the distribution of constraints among differ-
ent points along the chain. If this distribution is uniform then
W(6) = 1 inside the integrand of Eq. (91).

In the case when constraints are assumed to effect only
fluctuations of junctions

W(0) = 8(6) + 6(60 — 1) (92)

where 6 denotes the Dirac d-function. Also, because each
junction is shared by ¢ chains, v in Eq. (91) should be
replaced by 2v/¢p = u and the elastic free energy of
constraints of the Flory theory is recovered.

If constraints are assumed to effect the fluctuations of the
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Fig. 11. Comparison of various constraint theories of rubber elasticity. The
modulus [f*] (normalized by VkTV%?/Vd is plotted as a function of the
inverse elongation a”! for dry (v, = 1) tetrafunctional network (¢ = 4)
for the Erman—Monnerie theory (E.M.), the Flory theory and the present
theory (new) calculated for kg = 2, and additionally for kg = 2 for the
Erman—Monnerie theory (dashed line).

midpoint of the chain only then
W) = 86 — 1/2) (93)

which leads to an expression similar (but not identical) to
the elastic free energy of constraints in the Erman—Monn-
erie theory [61,62]. The diffused-constraint theory does not
reduce identically to the Erman—Monnerie constrained
chain theory, because instead of the deformation-indepen-
dent fluctuations of the midpoint of the chain they studied
the deformation-dependent fluctuations of the center of
mass of the chain.

The reduced force (modulus) in the diffused-constraints
theory is given by the integral

o [ax(x) -~ ak(x)]
é—2 a— a2

F1=0"Tm| 1+ do | (94)

Fig. 11 compares the results of the diffused-constraint
theory with other theories. The calculated modulus is larger
than the modulus obtained from the constrained chain
theory, and larger than the modulus obtained from the
Flory constrained junction theory. Because of this the
diffused-constraint theory fits well experimental data for
relatively low values of the parameter x, while Erman—
Monnerie and Flory theories require much larger values of
k. In arecent paper Urayama, Kawamura and Kohjiya [154]
tested and compared various most recent theories of the
rubber elasticity, similarly as Gotlieb and Gaylord tested
‘older’ theories in the 1980s [155]. Urayama and coworkers
compared Kloczkowski, Erman and Mark diffused-
constraints model with Edwards—Vilgis slip-link theory
[150] and with three most recent tube models: Gaylord
and Douglas model [140,141], Heinrich, Straube and

Helmis model [120] and Rubinstein and Panyukov model
[142].

The predictions of all these models were fitted to experi-
mental data. Each of these models has different number of
adjustable parameters. Kloczkowski—Erman—Mark model
has only one parameter kr measuring the severity of entan-
glements. Gaylord—Douglas and Rubinstein—Panyukov
theories also have one adjustable parameter, while Hein-
rich—Straube—Helmis model has two adjustable parameters
and Edwards and Vilgis model have three adjustable para-
meters. The results of Urayama and coworkers show that the
diffused-constraints theory is more successful in reprodu-
cing stress—strain data than all tube models, the only defi-
ciency of this theory comes from the underestimation of the
equilibrium modulus G, because trapped entanglements are
neglected in this theory. The Edwards—Vilgis model is the
most successful but at the cost of having two additional
adjustable parameters. The slight modification the ‘diffused
constraint’ theory to include additional adjustable parameter
for fitting the equilibrium modulus could probably lead to
the best performance of this theory in comparison with all
other models.

The diffused-constraint theory was also applied to the
theoretical analysis of strain birefringence in deformed
polymer networks [64]. The birefringence of polarized
light, i.e. the dependence of the refractive index on the
direction of light polarization is observed in anisotropic
media. In the isotropic medium the refractive index does
not depend on the direction of the light polarization. The
birefringence is observed in stretched polymer samples. The
refractive index in the direction parallel to the direction of
stretch differs from the refractive index in the perpendicular
direction, and the birefringence is related to the degree of
molecular order of the sample [65-69].

The stress birefringence is a simple and useful method to
study the relationship between the macroscopic deformation
of the network and the corresponding alignment of chains at
the molecular level, and is an excellent method for testing
various molecular theories of rubberlike elasticity.

The difference between polarizabilities in direction x and
y is related to the molecular deformation tensor

- - Iy o 2

@y = dy = (A - A) (95)
The molecular deformation tensor A is defined for differ-

ent components of the end-to-end vector as

2
Al = <<;2>>0 (t=xy,2) (96)

which may differ from the macroscopic deformation tensor
\, and I', is a constant. In the case of the affine model of the
network proposed by Kuhn the molecular deformation
tensor A is identical with the macroscopic deformation
tensor A. For the ¢-functional phantom model of the



1518 A. Kloczkowski / Polymer 43 (2002) 1503-1525

network deformation the relation between tensors A an A is

2 2
Al = (1 - f))\? +Z (t=xy,2) 97)
¢ ¢

The molecular deformation tensor in the constrained
junction theory [30] is

Agz(l_ E>)\g+ 20+B) (=272 98)
@ ¢

where B, is defined by Eq. (15). However in addition to the
molecular deformation tensor Az, there is also the domain
deformation tensor @ defined as

®O>=1+D, (99)

(with D, given by Eq. (16) and the total effective micro-
scopic tensor is a sum of A”and (@ 2 — 1) scaled by a factor
b(O<b<)

2 2
Alegr = (1 — —))\,2 + Z(1 + B, + bD,) (100)
[ (]

The free energy of constraints in the Erman—Monnerie
theory of constrained chain [61,62] is proportional to the
number of chains w. This leads to a slightly different expres-
sion for the molecular deformation tensor than Eq. (100),
namely
Al = (1 - E)A% + 25 B, + bD, (101)

® ¢
with B, and D, defined by Eqgs. (76) and (77).

The effective deformation tensor in the diffused-

constraint theory is given by the following formula:

1
Ao = (1 - 3))& + 2 + J dOW(6)[B,(0) + bD,(6)]
® ® 0

(102)

with B/(0) and D«(6) defined by Egs. (89) and (90). If
constraints are distributed uniformly along the chain
W(60) = 1 then the reduced birefringence is given by the
formula:

3
U 3 ¢ Vo
(8] = - kTC[l + 5o (V )

1
JO do W(O)[B,(6) — By(0) + b[D,(6) — Dy(6)]] ]
X

a2_a—l

(103)

where £ is the cycle rank of the network, and C is the stress-
optical coefficient.

The numerical calculations show that the reduced bire-
fringence for the diffused-constraint theory is larger than the
birefringence for the constrained chain and constrained
junction model. This is shown in Fig. 12. Similarly as for
the modulus we can use much smaller (and more realistic)

1.2
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Fig. 12. Comparison of the reduced birefringence as a function of the
inverse elongation for various models of the rubberlike elasticity: Flory
constrained junction theory, Erman—Monnerie theory (E.M.) and the
diffused-constraint theory (New). The calculations were performed for
dry tetrafunctional network with kg = 2. The solid lines correspond to
the scaling factory b = 1, and the dashed lines to b = 0.

values of the parameter « to fit experimental data, then « in
the constrained junction and the constrained chain models.

8. Segmental orientation and isotropic—nematic phase
transitions in deformed rubberlike networks of
semi-rigid chains

Segmental orientation (or molecular orientation) denotes
the anisotropic distribution of orientations of chain
segments in space. Segmental orientation in elastomeric
networks can be obtained under uniaxial deformation of
the sample. Segmental orientation in stretched networks
can be measured by the quantity

1
So=—n =211 (104)
Sm

The orientation function S, is given by the average value
of the second Legendre polynomial {P,(cos ¢)) of the
cosine of the angle ¢ between the direction of polymer
segment and the direction stretch. Here m is the number
of Kuhn segments in a network chain, and A is the extension
ratio defined as the ratio of the deformed length of a sample
to that in the reference state. Eq. (104) represents the leading
term of a more general expression based on the inverse
Langevin function [67]. The first theory of segmental orien-
tation was proposed by Kuhn and Griin [70] and was based
on the assumption that the chain segments do not interact
with their neighbors, i.e. intermolecular effects on segmen-
tal orientation are absent and the chains are phantom-like.
The theory of Kuhn and Griin is frequently referred to in the
literature as ‘gaslike’, because of the phantom-like nature of
polymer chains.

An improvement of this theory by taking into account
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intermolecular interactions was proposed by Di Marzio
[71], and later by Tanaka and Allen [72] and other authors
[73,74]. The theoretical treatment of the excluded volume of
polymer chains in these papers was possible by using lattice
representations of polymer chains. Each segment was repre-
sented on a lattice as a lattice point, and one site can not
accommodate more than one segment, which models the
excluded volume condition for real chains. These improved
theories are often called ‘liquid-like’.

Polymeric materials with sufficiently stiff segments show
liquid-crystalline behavior. There is a possibility of the
nematic—isotropic phase transition upon stretching the
sample.

Erman, Bahar, Kloczkowski and Mark [75] developed a
theory of segmental orientation, which (additionally to
the excluded volume) takes directly into account chain
stiffness, and which predicts liquid-crystalline behavior
and nematic—isotropic phase transtition in stretched
polymer networks. For this purpose the lattice theory
of Flory for chains with freely jointed rodlike segments
was adapted [76—78]. The length-to-width ratio x of
each Kuhn segment of a chain is a measure of chain stiffness
in the theory. Each chain is composed of m Kuhn segments
with length-to-width ratio x. The system of n, polymer and
n; solvent molecules in a lattice consisting of n, sites was
considered, with the respective volume fractions of polymer

and solvent:
Vo = mxnz/no V) = n]/no (105)

In the Flory lattice treatment of polymer chains the orien-
tation of each rod-like segment is given by disorientation
index y;

yi = x siny(|cos | + [sin ¢y |) (106)

where i, and ¢, are Euler angles of a given segment. It is
then possible to derive the combinatorial part of partition
function Zqyp

—In Z.omp = 11 In vy + nyln(vy/mx)
— (n; + nom)In[1 — v,(1 — J/x)]
+ ny(my — 1) — ny(m — Din(z — 1) (107)

and the oriental part of partition function Z e,

—InZyient =y Inny —ny — npmInm + Z Z ik ln
(108)

and the free energy of mixing the system, which is

AAm = _kBT ln(Zcome()rient) (109)

Here n; is the number of segments of the j-th chain with
orientation within the k-th fractional range of solid angle w.
To obtain the orientational distribution of segments under
deformation the free energy AA,, was minimized with

respect to n;; for a chain with the fixed end-to-end vector
was done by the use of Lagrange multipliers method. It was
also assumed that the end-to-end vector transforms affinely
under deformation. This leads to the system of three
nonlinear equations for y and two unknown Lagrange multi-
pliers B, vy with double integrals over angles ¢,

21T T
jo do jo dip sin Yilcos @| + [sin S|l (. 1)

% = 5 - (110a)
jo d¢j0 df (b, )
21 T
N I T
2 ° o ° = (110b)
Gm) j d¢>J 4y f( . 1)
0 0
21 T
1 J d([)J’ dy sin i cos Uf (o, )
= 40 0 (110c)
(BmAv,)1?

2m ™
[ oo avscs.
0 0
Here f(¢, ) is the orientional distribution function
f(&b, ) = sin rexp[—ax sin Y{|cos ¢| + [sin ¢|

+ B cos ¢ + 7ysin Y(cos ¢ + sin ¢)]] (111)
and the parameter a is
a= —In[1 —v,(1 — J/x)] 112)

The orientation function is then
27 o 3 2 1

= (P,(cos h)) = d¢ | di =cos“p— = (113)
0 0 2 2

It is possible to linearize the set of nonlinear equations
(Egs. (110a)—(110c)). The solution of the linearized system
of equations leads to a critical value of the length-to-width
ratio of Kuhn segments

3

0= G T = 10.98 (114)

For x larger than 10.98 the system is always anisotropic.
The exact relation between true stress o

yo L A(&)
X )TV mnge

1%
and strain in deformed networks of semi-rigid chains was
also derived [79]. The final expression is

(115)

kgT
o= BTnZ\/m/?»)\[B — Y(va A% (116)

with coefficients 8 and vy given by Egs. (110a)—(110c). The
linearized version of this equation

kyT
o= BTnz()\2 — 1/Avy) (117)

does not show the dependence of stress on the rigidity of
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Fig. 13. The reduced stress [f*] as a function of a ~' for a phase transitions
at constant length.

segments measured by the parameter x. The numerical solu-
tion of the system of nonlinear equations shows many inter-
esting features. The most interesting is the possibility of
isotropic—nematic  equilibria in deformed polymer
networks. The thermodynamic parameters which can be
easily controlled during the phase transition are either the
length of the sample measured by the extension ratio A, or
the applied force f.

The isotropic—nematic transition at constant length
occurs when the free energies of the nematic and the iso-
tropic phase are equal.

AA,, (isotropic) = AA,,(nematic) (118)

The phase with the lowest free energy prevails. For the
athermal system the isotrophic phase is stable at low axial
ratios x and at low concentrations of semi-rigid chains v,.
For sufficiently high axial ratios and high values of v, the
nematic solution has lower free energy than the isotropic
one. There is a critical value of the axial ratio x.; (given by
Eq. (114)) below which the nematic solution never exists
regardless of the deformation A. This is shown in Fig. 13.

We may also study the phase transition at constant force f,
when the length L of the sample changes. The proper free
energy AG,, for studying the phase transitions at constant
force f is

AG, = AA,, —fL (119)

The phase transition at constant force occurs when the
free energies AG,, of two phases are equal

AG,,(isotropic) = AG,,(nematic) (120)

The numerical analysis of the phase transition at constant
force is shown in Fig. 14.

The chemical potentials of the solvent and the polymer at
constant length or at constant force can also be calculated.
The proper chemical potentials are partial derivatives of
AA,, (or AG,,) with respect to the number of solvent n;
and polymer 7, molecules. The knowledge of the chemical

0.002 T T
[t*]
0.0015 b Isotropic -
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Fig. 14. The reduced stress [f*] as a function of a ~' for a phase transitions
at constant force.

potentials enables the study of the equilibrium phase
coexistence conditions in stretched networks.

The numerical results show that the isotropic—nematic
phase transition is possible only for the axial ratio x of the
polymer segments within a certain range. If polymer
segments have low axial ratio then the nematic phase
never exists, irrespective of deformation. On the other
hand, for sufficiently large value of x the system is always
in the nematic phase, and the isotropic phase does not exist.
For intermedium cases there is a possibility of isotropic—
nematic phase transition at constant length or constant force.
This is shown in Fig. 15 which shows that the isotropic—
nematic phase transition is possible only within the certain
range of values of x for which the plot of y/x vs. x has
inverted ‘S-like’ shape. The phase transition is manifested
by a sudden change of the orientation function S, and by the
sharp minimum in the modulus as the function of the exten-
sion ratio «. The phase transition can also be driven by
deswelling the system, and thus by changing the volume

0 5 x 10 15

Fig. 15. The values of y/x as a function of x for several elongations «. For
x > 10.98 the system is always anisotropic.
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Fig. 16. The reduced birefringence as a function of the inverse elongation
for a swollen network undergoing phase transition at constant stress. The
calculations were performed for x = 12, m = 100 and for varying values
of v,.

fraction of the polymer at constant length (or constant
force).

Yang et al. [80] applied this theory to study the optical
properties of networks of semi-rigid chains. The optical
birefringence in networks undergoing phase transitions at
constant length, or constant force and photoelastic proper-
ties of networks of semirigid chains were calculated. The
birefringence An of the network changes rapidly at the
phase transition. It increases drastically with the extension
during the phase transition. This is shown in Fig. 16. The
discontinuity of the stress-optical coefficient C at the phase
transition was also observed.

9. Strain-induced crystallization in elatometric networks

Some elastomeric networks undergo strain-induced crys-
tallization; the system becomes spatially disordered and the
formation of highly ordered crystallites is observed inside
amorphous (disordered) network [81-84]. A thermody-
namic theory for strain-induced crystallization was first
developed by Flory [85]. Flory’s theory is based on many
simplifying assumptions. He assumed that the crystallites
form parallel to the direction of stretch. He assumed also
that the chains are Gaussian. The configurational probability
of an amorphous Gaussian chain is

W(x,y,2) = (Bim'?Yexp[— B + y* + 2] (121)

with 8= (3/2n)”2/l where n is the number of statistical
segments per chain, / is the length of a segment and x, y,

and z are Cartesian components of the end-to-end vector r.
Under the affine deformation along the z-axis by a factor A,
the distribution of chain coordinates becomes

2
(122)

where v is the total number of chains. Flory assumed that
when 1 of the n segments of a chain crystallize, then the
relative number of configurations available to the n — 7
segments is

W (x,y,2') = (B'/m"*Yexp[—B7(* +y* + 5] (123)

with B’ = Bln/(n — )]"? and z' = +(|z| — l), where 7' is
the algebraic sum of the displacement lengths of the two
amorphous portions of the chain, with the plus sign for z >
0 and the minus for z < 0. The x and y displacements are
unaffected. The distribution of the coordinates of v chains
becomes

Q(x,y,7)=vW'(x,y,7) (124)

The themodynamic analysis of Flory rests on the assump-
tion that if n — 1 segments of each of the chains melt, this
leads to an entropy change

AS, = v(n — n)s; (125)

where s; is the entropy of fusion per segment. He also
assumed that because of the melting of the n — 7 segments,
there is an additional entropy change AS, resulting from the
change in the chain length distribution in the amorphous
region

AS, = k> OQ(xyz) In W'(x,y,2)

xyz

— k> 2y In W(x,y.2) (126)

xyz

Flory also assumed that the change in chain length distri-
bution is not accompanied by a change in internal energy.
Then the free energy A of the system with respect to a totally
crystalline chain depends only on the entropic contributions.
The configurational entropy of v chains involved in crystal-
lization is AS = AS, + AS, and the heat of fusion of n — 7
segments of v chains is vhs(n — 1), i.e.

A= —uRT[h(n — ) + AS, + AS, (127)

The thermodynamic condition for the equilibrium at the
strain-induced crystallization is

(ﬁ) =0 (128)
0N /a0,

Flory calculated the effect of the strain on the elevation of
the melting point, changes in the degree of crystallinity w,
and the elastic force exhibited by the network. The elevation
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Fig. 17. Experimental values of the normalized reduced stresss [f"1/vkT vs.
a " for cis-1-4 polybutadiene compared with predictions of the present
theory ({ = 0.001 and k = 125), and with those of Flory’s theory.

of the melting point with strain predicted by the theory is

T,, = /TS — (RIHp)d(A) (129)
The degree of crystallinity is

w=1- {32 — $N)(32 — )} (130)

and the retractive force f at equilibrium in a stretched poly-
mer is given by

f=RTI(A — A~ 2) — (6n/m)"?wl/(1 — w) (131)

where v is the number of chains per unit volume.
Here

dN) = (6/mn)PA — (V212 + AV (132)
and
6 = (H/R)(1/TY. — 1/T) (133)

where H; is the molar heat of fusion per segment, and 7% is
the incipient crystallization temperature of the undeformed
polymer.

In real networks end-to-end vectors of polymer chains do
not deform affinely, as shown by Eq. (122). The distribution
of instantaneous chain vectors is not affine in the strain. It is
the convolution of the distribution of the mean vectors (r)
which is affine, and the distribution of fluctuations Ar which
is independent of strain. A new theory of the strain-induced
crystallization of polymers (based of the constrained junc-
tion theory of rubberlike elasticity) was developed to
account for the effects of constraints [86,87]. The
constrained junction theory assumes that the fluctuations
are strain dependent and that the restrictions on the fluctua-
tions are represented by a domain of constraints. The
constraints depend on the network functionality ¢, and
also on the number of other chains sharing the same region
of space. Real network shows behavior intermediate to the
two extremes, namely the phantom and the affine models for

the deformation. The Gaussian distribution function of the
end-to-end distance in the presence of a domain of
constraints becomes

v B8\
Ox,y,2) = m(m)

2 2 2
X e
X y r4

where A is the macroscopic deformation tensor given by
Eq. (98)

A? = <1 — 3))\,2 + 3(1 +B) (t=x,y,2)
® ®
with
B,=(\ — 1)()\, +1- gA%)/u +g) (135)
&= NIk '+ - D] (136)

The parameter k is a measure of the severity of the entan-
glement constraints and { takes into account the possibility
of the transformation of the domains of constraints with
increasing strain [34,88].

The calculation of the configurational entropy for
network undergoing crystallization under stretching was
carried out in the similar way as by Flory [85] starting
from totally crystalline network. The calculations of the
degree of crystallinity and the incipient crystallization
temperature were also performed similarly as in the Flory’s
method.

The new theory shows much better agreement with
experimental data on strain-induced crystallization than
the original Flory theory, as shown by Fig. 17. Of course,
the upswing in Fig. 17 could be also explained by other
mechanisms, such as for example, the limited extensibility
of real chains. Therefore the problem should be studied in
more detail in the future, especially for other polymeric
networks. Because cis-1,4 polybutadiene has always certain
degree of crystallinity even when unstretched, natural
rubber (which crystallizes significantly only when
stretched) could be a better material for such studies.

10. Theoretical approach to filed polymer networks

Usually elastomers are compounded with a reinforcing
filler. The most important examples are the addition of
carbon black to natural rubber (in tires) and silica to silicone
rubbers.

The addition of filler improves many properties of these
materials like: the increase in modulus at given strain, tear
and abrasion resistance, resilience, extensibility, tensile
strength [89-93]. An experimental evidence suggest that
the reinforcement effect depends on the size of filler parti-
cles with the maximum reinforcement obtained for particles
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Fig. 18. Dependence of the nominal stress on the elongation for unattached
PE chains composed of 50 bonds at temperature 400 K and the same chains
attached to filler particles with specified diameters in A.

size range of 10—100 nm. Large sized particles instead of
reinforcement contribute to weakening of the polymer. The
fillers have very complicated hierarchy of structures from
aggregates through agglomerates to filler networking, with
all of them showing highly irregular shapes. Polymer chains
adsorb at the filler particle surface and covalent bonds are
frequently formed. However, experimental data on carbon
black and silica filled networks show that physical bonds
play even much more important role than chemical bonding.
Another factor which is closely related to the adsorption is
the change of the distribution of end-to-end vectors of poly-
mer chains in the presence of dispersed filler inside the
elastomer. The excluded volume of the filler increases the
non-Gaussian characteristics of nearby polymer chains.

The first theoretical attempt to explain the dependence of
filled rubbers on the concentration of filler has been done by
the Guth and Gold [94]. These authors modified the Einstein
viscosity equation for spherical particles in a viscous
medium by adding square term accounting for interactions
between particles and obtained the equation

n=mo(l +2.5¢ + 14.1¢%) (137)

where 1 and 7, are viscosities for filled and unfilled rubber
and ¢ is volume fraction of filler. Eq. (137) has been gener-
alized later by Guth to nonspherical particles [95]

n=mno(l + 0.67f$ + 1.62f>$%) (138)

where fis the shape factor used in the estimation of particles
anisometry.

There are several other models of reinforcement in
polymer composites [96]. Most of these theories are not
molecular. There is a serious lack of rigorous extension of
the statistical theory of rubber elasticity to a filled elastomer.
A statistical model of filled network based on the replica
formalism was developed by Heinrich and Vilgis [97].

The presence of the filler particles inside the polymer
changes the distribution function of the end-to-end vector
of the nearby chains, due to the excluded volume of the filler
and due to the adsorption of chains on the filler surface. This
leads to the change of elastic behavior of the polymer
network. A molecular theory to study these effects was
developed by Kloczkowski, Sharaf and Mark [98-101].
For simplicity the effect of adsorption was neglected in
the theory. To calculate and compare the elastic properties
of chains in unfilled networks and chains in the filled
rubbers the Monte Carlo rotational isomeric state simula-
tions for a single polymer chains were performed for poly-
ethylene (PE) and poly(dimethyl)siloxane (PDMS) chains
with various the degree of polymerization, and for different
temperatures and different sizes of filler particles.

The method was based on the Monte Carlo calculations of
the distribution of the end-to-end vector for free polymer
chains, and for chains in the presence of the filler. The
calculated end-to-end vector distribution functions enable
the prediction of elastic properties of chains within the
framework of Mark and Curro [102] theory.

The distribution P(r) of the end-to-end vector obtained by
Monte Carlo simulation is directly related to the Helmholtz
free energy A(r) of a chain with the end-to-end distance r

A(r) =c — kT In P(r) (139)

where c is a constant.

The application of the three-chain model [102] leads to
the following expression for the elastic free energy change
during the deformation of the network, as the function of
elongation ratio «

AA = gy[A(rooz) + 2A(rga” ") = 3A(r)] (140)

Here v is the number chains in the network and ry is the
value of root-mean-square end-to-end vector of network
chains. The simplifying assumption of affine deformation
of the network chains was used in the derivation of Eq.
(140). The normal stress f* defined as the elastic force at
equilibrium per unit cross-sectional area of the sample in the
undeformed state is

. dAA
fr= —T(—) (141)
Ja Jr1
The substitution of Eq. (140) in to Eq. (141) gives
" vkTr, _ _
f"= =516 ) — a Gy (142)

where G(r) = In P(+), and G'(r) denotes the derivative
dG/dr.

The effect of the network reinforcement by filler is shown
in Fig. 18 where the nominal stress as a function of elonga-
tion is plotted for PE chains for varying diameter of
spherical filler particles. Because of the very simplified
nature of the theory which neglects physical and chemical
bonding between the polymer and the filler, the theory could



1524 A. Kloczkowski / Polymer 43 (2002) 1503-1525

probably be the best applicable to non-aggregating fillers,
such as, e.g. highly crosslinked microgels.

11. Discussions

The presented work covers most of the fields of equili-
brium rubberlike elasticity. The research in this field has
started in late thirties with the pioneering works by Kuhn,
Guth and H.F. Mark. It became a very active field in forties
and fifties with important contributions by Flory, James,
Guth, Treloar, Wall and many other researchers, based
mostly on the analysis of Gaussian chain models. The sixties
and seventies were the times of the establishing the basis for
the rigorous statistical mechanical treatment of polymers
and elastomeric materials, with fundamental works by
Flory and his collaborators, Volkenstein, Nagai and many
other scientists. The rotational isomeric states model allow-
ing the more realistic analysis of polymer chains was devel-
oped in that time period. In the seventies the computer
simulations of polymers (including their elastic properties)
became very important. With the advance in the computer
technology the role of these simulations rapidly increased in
the eighties and the nineties. The computer simulations of
polymer chains were first based on the Monte Carlo method,
but recently also the molecular dynamics of polymers
became a standard simulation method.

In the eighties and nineties the rubberlike elasticity
became a fully developed field of science. Many basic
problems in this field has been has been already solved,
and the further growth concentrates on technological
aspects, such as finding better high performance materials,
using elastomeric phases for the improvement of non-
elastomeric materials (such as ceramics) or using the
computer modeling for the development of new materials.
The computer experiments are gradually replacing ‘real’
laboratory experiments in the polymer industry.

The unsolved problems and future directions in rubber-
like elasticity include the studies of the effect of network
topology, the strain-induced crystallization in unusual
deformations, studies of molecular origins of reinforcement,
refinement of the existing theories of constraints in networks
and theories of segmental orientation, ‘taylor-like’ design of
materials with desired properties.

The fields of rubberlike elasticity which are relatively
undeveloped and have a large growth potential are biopoly-
mers and bioelastomers. Fundamental problems for the
future investigation include the study of the elastic proper-
ties of DNA chains, folding—unfolding transitions in single
chains of muscle proteins (such as titin), the development of
artificial muscles, controlled delivery of drugs and agricul-
tural chemicals by gels, and many others. Recently it has
been shown that ideas from the rubberlike elasticity theory
can be successfully applied to the analysis of fluctuations of
residues in compact proteins [103,104] and to the study of
protein folding [105].
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